Growth of Low Voltage Phosphors Prepared by R.F. Magnetron Sputter Deposition 謝英家 Electrical Engineering Engineering hij@chu.edu.tw

Abstract

Field Emission Display (FED) is a new kind of Vacuum Flat Cathode Ray Tube (VFCRT) display. Due to the attractive advantages of FED, it is a good candidate for replacing the conventional Cathode Ray Tube (CRT) in flat panel displays. In FED, light is based on low-voltage cathodoluminescence (about 80-100 Volt). It is a low voltage, low power consumption and full-color display. Then, it is necessary to develop the low voltage phosphors for future FED applications.

The low voltage thin film phosphor () has been successfully developed in this paper. Magnesium tungstate () thin film phosphors prepared by the R. F. magnetron sputter deposition were characterized. Processing parameters such as operation power, working pressure, and oxygen/argon ratio were found to play the important roles in affecting the phases present in the as-deposited films. The - and - were determined as the major phases and the as a minor phase in the films studied. The - phase was stable for the films grown at higher powers or working pressures, whereas the - phase appeared to be a dominant phase for the films grown at higher oxygen concentration. The scanning electron microscope (SEM) characterization indicated that the films were rather dense and grown in a columnar array. The effect of processing parameters on the film morphology was not noticeable. The results of florescence spectrum measurement showed that the emission of low voltage thin film () was 3950.

Keyword: field emission display, flat cathode ray tube display, thin film phosphors and florescence spectrum